If you ally obsession such a referred the thermodynamics of phase and reaction equilibria book that will meet the expense of you worth, acquire the enormously best seller from us currently from several preferred authors. If you desire to funny books, lots of novels, tale, jokes, and more fictions collections are afterward launched, from best seller to one of the most current released.

You may not be perplexed to enjoy all books collections the thermodynamics of phase and reaction equilibria that we will entirely offer. It is not nearly the costs. Its more or less what you compulsion currently. This the thermodynamics of phase and reaction equilibria, as one of the most in action sellers here will unquestionably be in the course of the best options to review.

The Thermodynamics of Phase and Reaction Equilibria - Ismail Tosun 2012 This volume presents a sound foundation for understanding abstract concepts (physical properties such as fugacity, or chemical processes, such as distillation) of phase and reaction equilibria, and shows you how to apply these concepts to solve practical problems using numerous, clear examples. The book encourages the use of MATHCAD to write programs specific to each problem, enabling you to easily track mistakes.
and understand the order of magnitude of the various quantities involved. Provides guidelines in order to choose the 'best' equation of state suitable for the particular situation. Includes up-to-date information, comprehensive in-depth content and current examples in each chapter. Provides the right tools in order to and encourages you to use MATHCAD to write your own specific programs. Includes many well organized problems (with solutions), which are extensions of the examples enabling conceptual understanding to quantitative/real problem solving. Includes all mathematical background required for solving problems encountered in phase and reaction equilibria. Provides a Solutions Manual (for instructors in pdf form) allowing the use of the book in advanced thermodynamic courses.

Phase Diagrams and Thermodynamic Modeling of Solutions

Arthur D. Pelton

2018-09-19 Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical
Thermodynamics of Phase Equilibria in Food Engineering - Camila Gambini Pereira

2018-10-17 Thermodynamics of Phase Equilibria in Food Engineering is the definitive book on thermodynamics of equilibrium applied to food engineering. Food is a complex matrix consisting of different groups of compounds divided into macronutrients (lipids, carbohydrates, and proteins), and micronutrients (vitamins, minerals, and phytochemicals). The quality characteristics of food products associated with the sensorial, physical and microbiological attributes are directly related to the thermodynamic properties of specific compounds and complexes that are formed during processing or by the action of diverse interventions, such as the environment, biochemical reactions, and others. In addition, in obtaining bioactive substances using separation processes, the knowledge of phase equilibria of food systems is essential to provide an efficient separation, with a low cost in the process and high selectivity in the recovery of the desired component. This book combines theory and application of phase equilibria data of systems containing food compounds to help food engineers and researchers to solve complex problems found in food processing. It provides support to researchers from academia and industry to better understand the behavior of food materials in the face of processing effects, and to develop ways to improve the quality of the food products. Presents the fundamentals of phase equilibria in the food industry Describes both classic and advanced models, including cubic equations of state and activity coefficient Encompasses distillation, solid-liquid extraction, liquid-liquid extraction, adsorption, crystallization and supercritical fluid extraction
Explores equilibrium in advanced systems, including colloidal, electrolyte and protein systems

Measurement of the Thermodynamic Properties of Multiple Phases - Ron D. D. Weir
2005

Basics of Thermodynamics and Phase Transitions in Complex Intermetallics - Esther Belin-Ferr
2008
Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc. This book is the first of a series of books issued yearly as a deliverable to the European
Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.

Phase Equilibria, Phase Diagrams and Phase Transformations - Mats Hillert 2007-11-22

Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.

This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of
PHASE Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibrium phase transformations are also reviewed.

Classical and Geometrical Theory of Chemical and Phase Thermodynamics - Frank Weinhold 2009-02-17 Because it is grounded in math, chemical thermodynamics is often perceived as a difficult subject and many students are never fully comfortable with it. The first authoritative textbook presentation of equilibrium chemical and phase thermodynamics in a reformulated geometrical framework, Chemical and Phase Thermodynamics shows how this famously difficult subject can be accurately expressed with only elementary high-school geometry concepts. Featuring numerous suggestions for research-level extensions, this simplified alternative to standard calculus-based thermodynamics expositions is perfect for undergraduate and beginning graduate students as well as researchers.

Thermodynamics of Materials - Qing Jiang 2011-05-30 "Thermodynamics of Materials" introduces the basic underlying principles of thermodynamics as well as their applicability to the behavior of all classes of materials, while providing an integrated approach from macro- (or classical) thermodynamics to meso- and nanothermodynamics, and microscopic (or statistical) thermodynamics. The book is intended for scientists, engineers and graduate students in all fields involving materials science-related disciplines. Both Dr. Qing Jiang and Dr. Zi Wen are professors at Jilin University.

Kinetics of Phase Transitions - Sanjay Puri
2009-03-24 Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally relevant effects—such as disorder, strain fields, and wetting surfaces—into studies of phase ordering dynamics. In addition, it highlights topics garnering recent interest, such as the growth of nanostructures on surfaces. This book also provides a comprehensive overview of numerical techniques, which have proven useful in studying these complex nonlinear problems.

Phase Equilibrium Engineering-Esteban Alberto Brignole 2013-04-02 Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the thermodynamic model and the process technology that could be applied are discussed. A classification of mixtures, separation process, thermodynamic models and technologies is presented to guide the engineer in the world of separation processes. The phase condition required for a given reacting system is studied at subcritical and supercritical conditions. The four cardinal points of phase equilibrium engineering are: the chemical plant or process, the laboratory, the modeling of phase equilibria and the simulator. The harmonization of all these components to obtain a better design or
operation is the ultimate goal of phase equilibrium engineering. Methodologies are discussed using relevant industrial examples. The molecular nature and composition of the process mixture is given a key role in process decisions. Phase equilibrium diagrams are used as a drawing board for process implementation.

The first volume of this work is organized in three levels, so that the portion and importance of thermodynamics and mathematics increase from level to level. The ground level shows that basics of phase equilibria can be understood without thermodynamics provided the concept of chemical potential is introduced early. The intermediate level introduces thermodynamics, culminating in the Gibbs energy as the arbiter for equilibrium. At the third level the accent is on binary systems, where one or more phases are solutions of the components. Priority is given throughout to the thermodynamic assessment of experimental data.

200 exercises are included with solutions.

This title is a revision of Experimental Thermodynamics Volume II, published in 1975, reflecting the significant technological developments and new methods introduced into the study of measurement of thermodynamic quantities. The editors of this volume were assigned the task of assembling an international team of distinguished experimentalists, to describe the current state of development of the techniques of measurement of the thermodynamic quantities of single phases. The resulting volume admirably fulfils this brief and contains a valuable summary of a large variety of experimental techniques applicable over a wide range of thermodynamic states with an emphasis on the precision and accuracy of the results obtained. Those interested in the art of measurements, and in particular engaged in the measurement of thermodynamic properties, will...
find this material invaluable for the guidance it provides towards the development of new and more accurate techniques. · Provides detailed descriptions of experimental chemical thermodynamic methods · Strong practical bias and includes both detailed working equations and figures for the experimental methods · Most comprehensive text in this field since the publication of Experimental Thermodynamics II

An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science - Eugene Machlin 2010-07-07
This book is based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science is about the application of thermodynamics and kinetics to solve problems within Materials Science. Emphasis is to provide a physical understanding of the phenomenon under discussion, with the mathematics presented as a guide. The problems are used to provide practice in quantitative application of principles, and also to give examples of applications of the general subject matter to problems having current interest and to emphasize the important physical concepts. End of chapter problems are included, as are references, and bibliography to reinforce the text. This book provides students with the theory and mathematics to understand the important physical understanding of phenomena. Based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science Provides students with the theory and mathematics to understand the important physical understanding of phenomena Includes end of chapter problems, references, and bibliography to reinforce the text

Microcanonical Thermodynamics: Phase Transitions In "Small" Systems - Dieter H E Gross 2001-03-15
Boltzmann's formula $S = \ldots$
In $[W(E)]$ defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a price to pay — for example, phase transitions can only be defined in the thermodynamic limit of infinite system size. The question how phase transitions show up from systems with, say, 100 particles with an increasing number towards the bulk can only be answered when one finds a way to define and classify phase transitions in small systems. This is all possible within Boltzmann's original definition of the microcanonical ensemble. Starting from Boltzmann's formula, the book formulates the microcanonical thermodynamics entirely within the frame of mechanics. This way the thermodynamic limit is avoided and the formalism applies to small as well to other nonextensive systems like gravitational ones. Phase transitions of first order, continuous transitions, critical lines and multicritical points can be unambiguously defined by the curvature of the entropy $S(E,N)$. Special attention is given to the fragmentation of nuclei and atomic clusters as a peculiar phase transition of small systems controlled, among others, by angular momentum. The dependence of the liquid-gas transition of small atomic clusters under prescribed pressure is treated. Thus the analogue to the bulk transition can be studied. The book also describes the microcanonical statistics of the collapse of a self-gravitating system under large angular momentum.

Phase Transformations in Materials - Gernot Kostorz 2001-10-25 For all kinds of materials, phase transformations show common phenomena and mechanisms, and often turn a material, for example metals, multiphase alloys, ceramics or composites, into its technological useful form. The physics and thermodynamics of a transformation from the solid to liquid state or
from one crystal form to another are therefore essential for creating high-performance materials. This handbook covers phase transformations, a general phenomenon central to understanding the behavior of materials and for creating high-performance materials. It will be an essential reference for all materials scientists, physicists and engineers involved in the research and development of new high performance materials. It is the revised and enhanced edition of the renowned book edited by the late P. Haasen in 1990 (Vol. 5, Materials Science and Technology).

Thermodynamics, Diffusion and the Kirkendall Effect in Solids-Aloke Paul 2014-07-16 In this book basic and some more advanced thermodynamics and phase as well as stability diagrams relevant for diffusion studies are introduced. Following, Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect are discussed. Short circuit diffusion is explained in detail with an emphasis on grain boundary diffusion. Recent advances in the area of interdiffusion will be introduced. Interdiffusion in multi-component systems is also explained. Many practical examples will be given, such that researches working in this area can learn the practical evaluation of various diffusion parameters from experimental results. Large number of illustrations and experimental results are used to explain the subject. This book will be appealing for students, academicians, engineers and researchers in academic institutions, industry research and development laboratories.

Thermodynamics of the Earth and Planets-Alberto Patiño Douce 2011-08-25 This textbook provides an intuitive yet mathematically rigorous introduction to the thermodynamics and thermal physics of planetary processes. It demonstrates how the workings of planetary bodies can be understood in depth by reducing them to fundamental physics and chemistry. The book is based on two courses taught by the author for
many years at the University of Georgia. It includes 'Guided Exercise' boxes; end-of-chapter problems (worked solutions provided online); and software boxes (Maple code provided online). As well as being an ideal textbook on planetary thermodynamics for advanced students in the Earth and planetary sciences, it also provides an innovative and quantitative complement to more traditional courses in geological thermodynamics, petrology, chemical oceanography and planetary science. In addition to its use as a textbook, it is also of great interest to researchers looking for a 'one stop' source of concepts and techniques that they can apply to their research problems.

Molecular Thermodynamics of Fluid-phase Equilibria- J. M. Prausnitz 1999 Appropriate for chemical engineering students, Molecular Thermodynamics of Fluid-Phase Equilibria presents a broad introduction to the thermodynamics of phase equilibria in chemical engineering design, especially in separation operations.

The Thermodynamics of Phase Equilibrium- Laszlo Tisza 1960

Thermodynamic Data, Models, and Phase Diagrams in Multicomponent Oxide Systems- Olga Fabrichnaya 2013-03-14 This book involves application of the Calphad method for derivation of a self consistent thermodynamic database for the geologically important system MgO-FeO-Fe2O3-Al2O3-SiO2 at pressures and temperatures of Earth's upper mantle and the transition zone of that mantle for Earth. The created thermodynamic database reproduces phase relations at 1 bar and at pressures up to 30 GPa. The minerals are modelled by compound energy formalism, which gives realistic descriptions of their Gibbs energy and takes into account crystal structure data. It incorporates a detailed review of diverse types of experimental data which are used to derive the thermodynamic database:
phase equilibria, calorimetric studies, and thermoelastic property measurements. The book also contains tables of thermodynamic properties at 1 bar (enthalpy and Gibbs energy of formation from the elements, entropy, and heat capacity, and equation of state data at pressures from 1 bar to 30 GPa. Mixing parameters of solid solutions are also provided by the book.

Table of Contents
Introduction to the Series .. V
Acknowledgments .. VII
Preface .. IX
Table of Contents .. XI
Co-Authors .. XIII
Vitae of Co-Authors .. XV

Chapter 1. Thermodynamics and Modeling
 1.1 Introduction .. 11
 1.2 Thermodynamic Modeling 12
 1.3 Experimental Data .. 13
 1.4 Programs and Assessment 14
 1.5 System and Phases .. 15

Chapter 2. Experimental Phase Equilibrium Data
 2.1 The Si02 System .. 7
 2.2 The Fe-0 System .. 7
8 2. 3 The Fe-Si-O System

10 2. 4 The MgO-SiO System

Phase Equilibria in Chemical Engineering - Stanley M. Walas 1985

Phase Transitions in Materials - Brent Fultz 2014-08-14 A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.

Thermodynamics of Polymer Solutions - Kenji Kamide 1990 This is the first self-contained book on the thermodynamics and critical phenomena of polymer solutions, ranging from the rather elementary level to the advanced and up-to-date level. The book covers the rigorous theories of phase equilibrium, computer experiments based on these theories, as well as actual experiments, molecular fractionation and application to membrane and fiber production. An extensive list of references and literature data on the thermodynamic interaction x-parameter, critical point, fractionation and polymer blends is also provided. This book should prove invaluable for courses on polymer science, thermodynamics and polymer solutions at graduate, university and polytechnic level.

The Thermodynamics and Phase Equilibria of the Fe-Co-S-O System - Omran A. Musbah 1986

Phase Diagrams and Heterogeneous Equilibria - Bruno Predel 2013-03-09 This advanced comprehensive textbook introduces the practical application of phase diagrams to the
thermodynamics of materials consisting of several phases. It describes the fundamental physics and thermodynamics as well as experimental methods, treating all material classes: metals, glasses, ceramics, polymers, organic materials, aqueous solutions. With many application examples and realistic cases from chemistry and materials science, it is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Also concisely presented are the thermodynamics and composition of polymer systems. This innovative text puts this powerful analytical approach into a readily understandable and practical context, perhaps for the first time.

Molecular Thermodynamics of Fluid-phase Equilibria-J. M. Prausnitz 1969 97774-4 The classic guide to mixtures, completely updated with new models, theories, examples, and data. Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations. Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes: Techniques for improving separation processes and making them more environmentally friendly. Theoretical concepts enabling the description and interpretation of solution properties. New models, notably the lattice-fluid and statistical associated-fluid theories. Polymer solutions, including gas-polymer equilibria, polymer blends, membranes,
and gels. Electrolyte solutions, including semi-empirical models for solutions containing salts or volatile electrolytes. Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more. Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals.

Thermodynamics-Ismail Tosun 2015 This eminently readable introductory text provides a sound foundation to understand the abstract concepts used to express the laws of thermodynamics. The emphasis is on the fundamentals rather than spoon-feeding the

Phase Equilibria in Chemical Engineering-Stanley M. Walas 2013-10-22 Phase Equilibria in Chemical Engineering is devoted to the thermodynamic basis and practical aspects of the calculation of equilibrium conditions of multiple phases that are pertinent to chemical engineering processes. Efforts have been made throughout the book to provide guidance to adequate theory and practice. The book begins with a long chapter on equations of state, since it is intimately bound up with the development of thermodynamics. Following material on basic thermodynamics and nonidealities in terms of fugacities and activities, individual chapters are devoted to equilibria primarily between pairs of phases. A few topics that do not fit into these
categories and for which the state of the art is not yet developed quantitatively have been relegated to a separate chapter. The chapter on chemical equilibria is pertinent since many processes involve simultaneous chemical and phase equilibria. Also included are chapters on the evaluation of enthalpy and entropy changes of nonideal substances and mixtures, and on experimental methods. This book is intended as a reference and self-study as well as a textbook either for full courses in phase equilibria or as a supplement to related courses in the chemical engineering curriculum. Practicing engineers concerned with separation technology and process design also may find the book useful.

Microcanonical Thermodynamics

Dieter H. E. Gross 2001

Boltzmann's formula $S = \ln(W(E))$ defines the microcanonical ensemble. The usual textbooks on statistical mechanics start with the microensemble but rather quickly switch to the canonical ensemble introduced by Gibbs. This has the main advantage of easier analytical calculations, but there is a price to pay -- for example, phase transitions can only be defined in the thermodynamic limit of infinite system size. The question how phase transitions show up from systems with, say, 100 particles with an increasing number towards the bulk can only be answered when one finds a way to define and classify phase transitions in small systems. This is all possible within Boltzmann's original definition of the microcanonical ensemble. Starting from Boltzmann's formula, the book formulates the microcanonical thermodynamics entirely within the frame of mechanics. This way the thermodynamic limit is avoided and the formalism applies to small as well to other nonextensive systems like gravitational ones. Phasetransitions of first order, continuous transitions, critical lines and multicritical points can be unambiguously defined by the curvature of the entropy $S(E, N)$. Special attention is given to the fragmentation of nuclei and atomic clusters as a peculiar phase transition of small systems controlled, among others, by angular momentum. The dependence of the liquid-gas
transition of small atomic clusters under prescribed pressure is treated. Thus the analogue to the bulk transition can be studied. New insights into the many facets of the many-body physics of the critical point are presented. The book also describes the microcanonical statistics of the collapse of a self-gravitating system under large angular momentum.

K Termodinamike Fazovykh Perekhodov Vtorogo Roda - V. A. Sokolov 1951

CRC Handbook of Phase Equilibria and Thermodynamic Data of Polymer Solutions at Elevated Pressures - Christian Wohlfarth 2015-02-10 Thermodynamic data of polymer solutions are paramount for industrial and laboratory processes. These data also serve to understand the physical behavior of polymer solutions, study intermolecular interactions, and gain insights into the molecular nature of mixtures. Nearly a decade has passed since the release of a similar CRC Handbook and since the

Introduction to the Thermodynamics of Materials - David R. Gaskell 2018 Maintaining the substance that made Introduction to the Thermodynamic of Materials a perennial best seller for decades, this Sixth Edition is updated to reflect the broadening field of materials science and engineering. The new edition is reorganized into three major sections to align the book for practical coursework, with the first (Thermodynamic Principles) and second (Phase Equilibria) sections aimed at use in a one semester undergraduate course. The third section (Reactions and Transformations) can be used in other courses of the curriculum that deal with oxidation, energy, and phase transformations. The book is updated to include the role of work terms other than PV work (e.g., magnetic work) along with their attendant aspects of entropy, Maxwell equations, and the role of such applied fields on phase diagrams. There is also an increased emphasis on the
thermodynamics of phase transformations and the Sixth Edition features an entirely new chapter 15 that links specific thermodynamic applications to the study of phase transformations. The book also features more than 50 new end of chapter problems and more than 50 new figures.

Thermodynamics Jurgen M. Honig 1999-06-14

This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory's approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics. The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relation between theory and experiment should provide a reader with a more intuitive understanding of the basic principles. Graduate students and professional chemists in physical chemistry and inorganic chemistry, as well as graduate students and professionals in physics who wish to acquire a more sophisticated overview of thermodynamics and related subject matter will find this book extremely helpful. Key Features * Takes the reader through various steps to understanding: * Review of fundamentals * Development of subject matter * Applications in a variety of disciplines

Semiconductor and Metal Binary Systems

V.M. Glazov 2012-04-13

This book is devoted to
the fundamentals of the theoretical analysis of phase equilibrium diagrams. Phase diagrams are known to play an important role in metallurgy and materials science, chemical engineering, petroleum refining, etc. A study of phase diagrams can help in choosing the optimal composition of mixtures and alloys and in determining the appropriate conditions for their thermal treatment, as well as in determining the efficiency of such processes as distillation, rectification, zone refining, and controlled crystallization for the separation and purification of materials. In spite of this, the extensive thermodynamic information which can be extracted from phase diagrams has scarcely been utilized until recently, due to the analysis of phase equilibria. comparatively poorly developed foundations. We have attempted to present a general picture of the thermodynamic analysis of phase diagrams, and to demonstrate the broad possibilities of this approach in elucidating the nature of the interaction of the components and the structure of the phases. This book summarizes research carried out at the Moscow Institute of Electronic Engineering over the past decade. Extensive summaries of published data are also included. In the course of our work we have made extensive use of modern computing methods, which allowed solutions to be obtained to many problems.

Computational Problems in the Thermodynamics of Phase Equilibria and Vaporization Kinetics - MANLABS INC
CAMBRIDGE MASS. 1965 Numerical predictions are made of certain equilibrium thermodynamic features of real systems: phase limits, vapor pressure, congruent vaporization compositions, eutectic points, melting point maxima, composition dependence of the heats of formation of compounds, etc. This theoretical model can be used to correlate diverse thermochemical data. The equilibrium phase diagram is calculated, using statistical thermodynamical models of certain homogenous phases, namely a regular solution phase (solid or liquid) and a nonstoichiometric solid compound.

Modeling in Transport Phenomena - Ismail Tosun 2007-07-17 Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to understand why a phenomenon behaves the way it does. For this purpose, a complicated real-life problem is transformed into a mathematically tractable problem while preserving the essential features of it. Such a process, known as mathematical modeling, requires understanding of the basic concepts. This book teaches students these basic concepts and shows the similarities between them. Answers to all problems are provided allowing students to check their solutions. Emphasis is on how to get the model equation representing a physical phenomenon and not on exploiting various numerical techniques to solve mathematical equations. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations as well as the physical significance of each term are given in detail Many more problems and examples are given than in the first
High-Pressure Fluid Phase Equilibria - Ulrich K Deiters 2012-04-26 The book begins with an overview of the phase diagrams of fluid mixtures (fluid = liquid, gas, or supercritical state), which can show an astonishing variety when elevated pressures are taken into account; phenomena like retrograde condensation (single and double) and azeotropy (normal and double) are discussed. It then gives an introduction into the relevant thermodynamic equations for fluid mixtures, including some that are rarely found in modern textbooks, and shows how they can be used to compute phase diagrams and related properties. This chapter gives a consistent and axiomatic approach to fluid thermodynamics; it avoids using activity coefficients. Further chapters are dedicated to solid-fluid phase equilibria and global phase diagrams (systematic search for phase diagram classes). The appendix contains numerical algorithms needed for the computations. The book thus enables the reader to create or improve computer programs for the calculation of fluid phase diagrams. introduces phase diagram classes, how to recognize them and identify their characteristic features presents rational nomenclature of binary fluid phase diagrams includes problems and solutions for self-testing, exercises or seminars.